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Abstract—In this paper, we present a new and significant
theoretical discovery. If the absolute height difference between
base station (BS) antenna and user equipment (UE) antenna is
larger than zero, then the network capacity performance in terms
of the area spectral efficiency (ASE) will continuously decrease as
the BS density increases for ultra-dense (UD) small cell networks
(SCNs). This performance behavior has a tremendous impact
on the deployment of UD SCNs in the 5th-generation (5G)
era. Network operators may invest large amounts of money in
deploying more network infrastructure to only obtain an even
worse network performance. Our study results reveal that it
is a must to lower the SCN BS antenna height to the UE
antenna height to fully achieve the capacity gains of UD SCNs
in 5G. However, this requires a revolutionized approach of BS
architecture and deployment, which is explored in this paper too.

1

I. INTRODUCTION

From 1950 to 2000, the wireless network capacity has

increased around 1 million fold, in which an astounding 2700×

gain was achieved through network densification using smaller

cells [1]. After 2008, network densification continues to fuel

the 3rd Generation Partnership Project (3GPP) 4th-generation

(4G) Long Term Evolution (LTE) networks, and is expected

to remain as one of the main forces to drive the 5th-generation

(5G) networks onward [2]. Indeed, the orthogonal deployment

of ultra-dense (UD) small cell networks (SCNs) within the

existing macrocell network, i.e., small cells and macrocells

operating on different frequency spectrum (3GPP Small Cell

Scenario #2a [3]), is envisaged as the workhorse for capacity

enhancement in 5G due to its large spectrum reuse and its easy

management; the latter one arising from its low interaction

with the macrocell tier, e.g., no inter-tier interference [2]. In

this paper, the focus is on the analysis of these UD SCNs with

an orthogonal deployment with the macrocells.

Before 2015, the common understanding on SCNs was that

the density of base stations (BSs) would not affect the per-BS

coverage probability performance in interference-limited fully-

loaded wireless networks, and thus the area spectral efficiency

(ASE) performance in bps/Hz/km2 would scale linearly with

network densification [4]. The implication of such conclusion

is huge: The BS density does NOT matter, since the increase

in the interference power caused by a denser network would

be exactly compensated by the increase in the signal power

due to the reduced distance between transmitters and receivers.

Fig. 1 shows the theoretical ASE performance predicted in [4].
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Fig. 1. Theoretical comparison of the ASE performance in bps/Hz/km2. Note
that all the results are obtained using practical 3GPP channel models [5,
6], which will be explained in details later. Due to the practicality of the
used channel models, the results shown here accurately characterize realistic
telecommunication systems both qualitatively and quantitatively. For example,
considering a typical bandwidth of 10 MHz~100 MHz for the state-of-the-
art LTE network, the achievable area throughput is in the order of several
Gbps/km2, because the ASE for 4G is shown to be around 100 bps/Hz/km2.

However, it is important to note that this conclusion was

obtained with considerable simplifications on the propagation

environment, which should be placed under scrutiny when

evaluating dense and UD SCNs, since they are fundamentally

different from sparse ones in various aspects [2].

In the last year, a few noteworthy studies have been carried

out to revisit the network performance analysis for UD SCNs

under more practical propagation assumptions. In [7], the

authors considered a multi-slope piece-wise path loss function,

while in [8], the authors investigated line-of-sight (LoS) and

non-line-of-sight (NLoS) transmission as a probabilistic event

for a millimeter wave communication scenario. The most

important finding in these two works was that the per-BS

coverage probability performance starts to decrease when the

BS density is sufficiently large. Fortunately, such decrease of

coverage probability did not change the monotonic increase of

the ASE as the BS density increases.

In our very recent work [9, 10], we took a step further

and generalized the works in [7] and [8] by considering both

piece-wise path loss functions and probabilistic NLoS and LoS

transmissions. Our new finding was not only quantitatively

but also qualitatively different from previous results in [4, 7,

8]: The ASE will suffer from a slow growth or even a small

decrease on the journey from 4G to 5G when the BS density

is larger than a threshold. Fig. 1 shows these new theoretical
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results on the ASE performance, where such threshold is

around 20 BSs/km2 and the slow/negative ASE growth is

highlighted by a circled area. This circled area is referred to

as the ASE Crawl hereafter. The intuition of the ASE Crawl

is that the interference power increases faster than the signal

power due to the transition of a large number of interference

paths from NLoS to LoS with the network densification. The

implication is profound: The BS density DOES matter, since it

affects the signal to interference relationship. Thus, operators

should be careful when deploying dense SCNs in order to

avoid investing huge amounts of money and end up obtaining

an even worse network performance due to the ASE Crawl.

Fortunately, our results in [9, 10] also pointed out that the ASE

will again grow almost linearly as the network further evolves

to an UD one, i.e., > 103 BSs/km2 in Fig. 1. According to

our results and considering a 300 MHz bandwidth, if the BS

density can go as high as 104 BSs/km2, the problem of the ASE

Crawl caused by the NLoS to LoS transition can be overcome,

and an area throughput of 103 Gbps/km2 can be achieved, thus

opening up an efficient way forward to 5G.

Unfortunately, the NLoS to LoS transition is not the only

obstacle to efficient UD SCNs in 5G, and there are more

challenges to overcome to get there. In this paper, we present

for the first time the serious problem posed by the absolute

antenna height difference between SCN base stations (BSs)

and user equipments (UEs), and evaluate its impact on UD

SCNs by means of a three-dimensional (3D) stochastic ge-

ometry analysis (SGA). We made a new and significant theo-

retical discovery: If the absolute antenna height difference

between BSs and UEs, denoted by L, is larger than zero,

then the ASE performance will continuously decrease as

the SCN goes ultra-dense. Fig. 1 illustrates the significance

of such theoretical finding with L = 8.5m [11]: After the

ASE Crawl, the ASE performance only increases marginally

(~1.4x) from 109.1 bps/Hz/km2 to 149.6 bps/Hz/km2 as the

BS density goes from 200BSs/km2 to 103 BSs/km2, which is

then followed by a continuous and quick fall starting from

around 103 BSs/km2. The implication of this result is even

more profound than that of the ASE Crawl, since following a

traditional deployment with UD SCN BSs deployed at lamp

posts or similar heights may dramatically reduce the network

performance in 5G. Such decline of ASE in UD SCNs will

be referred to as the ASE Crash hereafter, and its fundamental

reasons will be explained in details later in this paper.

In order to address this serious problem of the ASE Crash,

we further propose to change the traditional BS deployment,

and lower the 5G UD SCN BS antenna height to the UE

antenna height, so that the ASE behavior of UD SCNs can

roll back to our previous results in [10], thus avoiding the

ASE Crash. This requires a revolutionized BS deployment

approach, which will also be explored in this paper.

The rest of this paper is structured as follows. Section II

describes the system model for the 3D SGA. Section III

presents our theoretical results on the coverage probability

and the ASE performance, while the numerical results are

discussed in Section IV, with remarks shedding new light on

the revolutionized BS deployment with UE-height antennas.

Finally, the conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a downlink (DL) cellular network with BSs

deployed on a plane according to a homogeneous Poisson

point process (HPPP) Φ of intensity λ BSs/km2. UEs are

Poisson distributed in the considered network with an intensity

of ρ UEs/km2. Note that ρ is assumed to be sufficiently larger

than λ so that each BS has at least one associated UE in its

coverage [7–10]. The two-dimensional (2D) distance between

a BS and an a UE is denoted by r. Moreover, the absolute

antenna height difference between a BS and a UE is denoted

by L. Hence, the 3D distance between a BS and a UE can be

expressed as

w =
√

r2 + L2. (1)

Following [9, 10], we adopt a very general and practical

path loss model, in which the path loss ζ (w) associated with

distance w is segmented into N pieces written as

ζ (w) =























ζ1 (w) , when 0 ≤ w ≤ d1

ζ2 (w) , when d1 < w ≤ d2
...

...

ζN (w) , when w > dN−1

, (2)

where each piece ζn (w) , n ∈ {1, 2, . . . , N} is modeled as

ζn (w)=

{

ζL
n (w) = AL

nw
−αL

n ,

ζNL
n (w) = ANL

n w−αNL
n ,

LoS: PrL
n (w)

NLoS: 1− PrL
n (w)

, (3)

where ζL
n (w) and ζNL

n (w) , n ∈ {1, 2, . . . , N} are the n-th

piece path loss functions for the LoS transmission and the

NLoS transmission, respectively, AL
n and ANL

n are the path

losses at a reference distance w = 1 for the LoS and the

NLoS cases, respectively, and αL
n and αNL

n are the path loss

exponents for the LoS and the NLoS cases, respectively. In

practice, AL
n, ANL

n , αL
n and αNL

n are constants obtainable from

field tests [5, 6]. Moreover, PrL
n (w) is the n-th piece LoS

probability function that a transmitter and a receiver separated

by a distance w has a LoS path, which is assumed to be a

monotonically decreasing function with regard to w.

For convenience,
{

ζL
n (w)

}

and
{

ζNL
n (w)

}

are further

stacked into piece-wise functions written as

ζPath (w) =























ζPath
1 (w) , when 0 ≤ w ≤ d1

ζPath
2 (w) , when d1 < w ≤ d2

...
...

ζPath
N (w) , when w > dN−1

, (4)

where the string variable Path takes the value of “L” and

“NL” for the LoS and the NLoS cases, respectively.

Besides,
{

PrL
n (w)

}

is stacked into a piece-wise function as

PrL (w) =























PrL
1 (w) , when 0 ≤ w ≤ d1

PrL
2 (w) , when d1 < w ≤ d2

...
...

PrL
N (w) , when w > dN−1

. (5)



In this paper, we assume a practical user association strategy

(UAS), in which each UE should be associated with the BS

providing the smallest path loss (i.e., with the largest ζ (w)) [8,

10]. In addition, we assume that each BS/UE is equipped with

an isotropic antenna, and that the multi-path fading between a

BS and a UE is modeled as independently identical distributed

(i.i.d.) Rayleigh fading [7–10]. Note that a more practical

Rician fading will also be considered in the simulation section

to show its impact on our conclusions.

III. MAIN RESULTS

Using a 3D SGA based on the HPPP theory, we study the

performance of the SCN by considering the performance of a

typical UE located at the origin o.

We first investigate the coverage probability that this UE’s

signal-to-interference-plus-noise ratio (SINR) is above a per-

designated threshold γ:

pcov (λ, γ) = Pr [SINR > γ] , (6)

where the SINR is calculated as

SINR =
Pζ (w) h

Iagg +N0

, (7)

where h is the channel gain and is modeled as an exponential

random variable (RV) with the mean of one due to Rayleigh

fading, P and N0 are the transmission power of each BS and

the additive white Gaussian noise (AWGN) power at each UE,

respectively, and Iagg is the cumulative interference given by

Iagg =
∑

i: bi∈Φ\bo

Pβigi, (8)

where bo is the BS serving the typical UE located at distance

w from the typical UE, and bi, βi and gi are the i-th interfering

BS, the path loss associated with bi and the multi-path fading

channel gain associated with bi, respectively.

Based on the path loss model in (2) with 3D distances and

the considered UAS, we present our main result on pcov (λ, γ)
in Theorem 1 shown on the top of the next page.

According to [9, 10], we also investigate the ASE in

bps/Hz/km2 for a given λ, which can be computed as

AASE (λ, γ0) = λ

∫ +∞

γ0

log2 (1 + γ) fΓ (λ, γ) dγ, (18)

where γ0 is the minimum working SINR for the considered

SCN, and fΓ (λ, γ) is the probability density function (PDF)

of the SINR observed at the typical UE at a particular value

of λ. Based on the definition of pcov (λ, γ) in (6), which is

the complementary cumulative distribution function (CCDF)

of SINR, fΓ (λ, γ) can be expressed by

fΓ (λ, γ) =
∂ (1− pcov (λ, γ))

∂γ
, (19)

where pcov (λ, γ) is obtained from Theorem 1.

Considering the results of pcov (λ, γ) and AASE (λ, γ0) re-

spectively shown in (9) and (18), we propose Theorem 2 to

theoretically explain the fundamental reasons of the ASE Crash

discussed in Section I.

Theorem 2. If L > 0 and γ, γ0 < +∞, then

lim
λ→+∞

pcov (λ, γ) = 0 and lim
λ→+∞

AASE (λ, γ0) = 0.

Proof: We omit the proof here due to the page limitation.

Instead, in the following, we describe the essence of theorem

and provide a toy example to clarify it. We will provide the

full proof in the journal version of this paper.

In essence, Theorem 2 states that when λ is extremely

large, e.g., in UD SCNs, both pcov (λ, γ) and AASE (λ, γ0) will

decrease towards zero with the network densification, and UEs

will experience service outage, thus creating the ASE Crash.

The fundamental reason for this phenomenon is revealed by

the key point of the proof, i.e., the signal power will lose

its superiority over the interference power when λ → +∞,

even if the interference created by the BSs that are relatively

far away is ignored. This is because the absolute antenna

height difference L introduces a cap on the signal-link

distance and thus on the signal power. Theorem 2 is in stark

contrast with the conclusion in [4, 7–10], which indicates that

the increase in the interference power will be exactly counter-

balanced by the increase in the signal power when λ → +∞.

Since the proof of Theorem 2 is mathematically intense

and difficult to digest, in the following we provide a toy

example to shed some valuable insights on the rationale behind

Theorem 2. We consider a simple 2-BS SCN as illustrated in

Fig. 2, where the 2D distance between the serving BS and the

UE and that between an arbitrary interfering BS and the UE

are denoted by r and τr, (1 < τ < +∞), respectively. In this

example, when λ → +∞, then r → 0, which can be intuitively

explained by the fact that the per-BS coverage area is roughly

in the order of 1

λ
, and thus the typical 2D distance from the

serving BS to the UE approaches zero when λ → +∞.

Fig. 2. Illustration of a toy example with a 2-BS SCN.

Considering that r → 0 and L is smaller than d1 in practical

SCNs [5, 6], we can assume that both the signal link and

the interference link should be dominantly characterized by

the first-piece LoS path loss function in (3), i.e., ζL
1 (w) =

AL
1

(√
r2 + L2

)−αL
1

. Thus, based on the 3D distances, we can

obtain the signal-to-interference ratio (SIR) as

γ̄ =
AL

1

(√
r2 + L2

)−αL
1

AL
1

(√
τ2r2 + L2

)−αL
1

=







√

√

√

√

1

1 + τ2−1

1+L2

r2







−αL
1

. (20)

Note that γ̄ is a monotonically decreasing function as r

decreases when L > 0. Moreover, it is easy to show that

lim
λ→+∞

γ̄ = lim
r→0

γ̄ =

{

1,

τα
L
1 ,

(L > 0)

(L = 0)
. (21)



Theorem 1. Considering the path loss model in (2) and the presented UAS, the probability of coverage pcov (λ, γ) can be derived as

p
cov (λ, γ) =

N
∑

n=1

(

T
L
n + T

NL
n

)

, (9)

where TL
n =

∫

√
d2
n
−L2

√

d2
n−1

−L2
Pr

[

PζL
n

(√
r2+L2

)

h

Iagg+N0
> γ

]

fL
R,n (r) dr, TNL

n =
∫

√
d2
n
−L2

√

d2
n−1

−L2
Pr

[

PζNL
n

(√
r2+L2

)

h

Iagg+N0
> γ

]

fNL
R,n (r) dr, and d0 and

dN are defined as L and +∞, respectively. Moreover, fL
R,n (r) and fNL

R,n (r)
(√

d2n−1 − L2 < r ≤
√
d2n − L2

)

, are represented by

f
L
R,n (r) = exp

(

−
∫ r1

0

(

1− PrL
(

√

u2 + L2

))

2πuλdu

)

exp

(

−
∫ r

0

PrL
(

√

u2 + L2

)

2πuλdu

)

PrLn

(

√

r2 + L2

)

2πrλ, (10)

and

f
NL
R,n (r) = exp

(

−
∫ r2

0

PrL
(

√

u2 + L2

)

2πuλdu

)

exp

(

−
∫ r

0

(

1− PrL
(

√

u2 + L2

))

2πuλdu

)

(

1− PrLn

(

√

r2 + L2

))

2πrλ, (11)

where r1 and r2 are given implicitly by the following equations as

r1 = arg
r1

{

ζ
NL

(

√

r21 + L2

)

= ζ
L
n

(

√

r2 + L2

)

}

, (12)

and

r2 = arg
r2

{

ζ
L

(

√

r22 + L2

)

= ζ
NL
n

(

√

r2 + L2

)

}

. (13)

In addition, Pr

[

PζL
n

(√
r2+L2

)

h

Iagg+N0
> γ

]

and Pr

[

PζNL
n

(√
r2+L2

)

h

Iagg+N0
> γ

]

are respectively computed by

Pr

[

PζLn
(√

r2 + L2
)

h

Iagg +N0

> γ

]

= exp

(

− γN0

PζLn
(√

r2 + L2
)

)

L
L
Iagg

(

γ

PζLn
(√

r2 + L2
)

)

, (14)

where L
L
Iagg

(s) is the Laplace transform of Iagg for LoS signal transmission evaluated at s, which can be further written as

L
L
Iagg (s) = exp

(

−2πλ

∫ +∞

r

PrL
(√

u2 + L2
)

u

1 +
(

sPζL
(√

u2 + L2
))

−1
du

)

exp

(

−2πλ

∫ +∞

r1

[

1− PrL
(√

u2 + L2
)]

u

1 +
(

sPζNL
(√

u2 + L2
))

−1
du

)

, (15)

and

Pr

[

PζNL
n

(√
r2 + L2

)

h

Iagg +N0

> γ

]

= exp

(

− γN0

PζNL
n

(√
r2 + L2

)

)

L
NL
Iagg

(

γ

PζNL
n

(√
r2 + L2

)

)

, (16)

where L
NL
Iagg

(s) is the Laplace transform of Iagg for NLoS signal transmission evaluated at s, which can be further written as

L
NL
Iagg (s) = exp

(

−2πλ

∫ +∞

r2

PrL
(√

u2 + L2
)

u

1 +
(

sPζL
(√

u2 + L2
))

−1
du

)

exp

(

−2πλ

∫ +∞

r

[

1− PrL
(√

u2 + L2
)]

u

1 +
(

sPζNL
(√

u2 + L2
))

−1
du

)

. (17)

Proof: We omit the proof here due to the page limitation. We will provide the full proof in the journal version of this paper.

Assuming that τ = 10 and αL
1 = 2 in (21), the limit of γ̄ in

UD SCNs will plunge from 20 dB when L = 0 to 0 dB when

L > 0, which means that even a rather weak interferer, e.g.,

with a power 20 dB below the signal power, will become a

real threat to the signal link when the absolute antenna height

difference L is non-zero in UD SCNs. The drastic crash of γ̄

when L > 0 is due to the cap imposed on the signal power

as the signal-link distance
√
r2 + L2 in the numerator of (20)

cannot go below L. Such cap on the signal-link distance and

the signal power leads to the ASE Crash, since other signal-

power-comparable interferers also approach the UE from all

directions as λ increases, which will eventually cause service

outage to the UE.

To sum up, in an UD SCN with conventional deployment

(i.e., L > 0), both pcov (λ, γ) and AASE (λ, γ0) will plunge

toward zero as λ increases, causing the ASE Crash. Its

fundamental reason is the cap on the signal power because

of the minimum signal-link distance tied to L, which cannot

be overcome with the densification. The only way to avoid

the ASE Crash is to remove the signal power cap by setting

L to zero, which means lowering the BS antenna height, not

just by a few meters, but straight to the UE antenna height.

Other applicable solutions may be the usage of very directive

antennas and/or the usage of sophisticated idle modes at the

SCN BSs, which will be investigated in our future work.

IV. SIMULATION AND DISCUSSION

In this section, we investigate the network performance and

use numerical results to establish the accuracy of our analysis.

As a special case of Theorem 1, following [10], we consider

a two-piece path loss and a linear LoS probability functions



Fig. 3. pcov (λ, γ) vs. λ with γ = 0 dB.

defined by the 3GPP [5, 6]. Specifically, in the path loss model

presented in (2), we use N = 2, ζL
1 (w) = ζL

2 (w) = ALw−αL

,

ζNL
1 (w) = ζNL

2 (w) = ANLw−αNL

[5]. And in the LoS

probability model shown in (5), we use PrL
1 (w) = 1− w

d1
and

PrL
2 (w) = 0, where d1 is a constant [6]. For clarity, this 3GPP

special case is referred to as 3GPP Case 1. As justified in [10],

we use 3GPP Case 1 for the case study because it provides

tractable results for (10)-(17) in Theorem 1. The details are

relegated to the journal version of this paper.

Following [10], we adopt the following parameters for 3GPP

Case 1: d1 = 300 m, αL = 2.09, αNL = 3.75, AL = 10−10.38,

ANL = 10−14.54, P = 24 dBm, N0 = −95 dBm. The BS

antenna and the UE antenna heights are set to 10 m and 1.5 m,

respectively [11], thus L = |10− 1.5| = 8.5m.

To check the impact of different path loss models on our

conclusions, we have also investigated the results for a single-

slope path loss model that does not differentiate LoS and NLoS

transmissions [4], where only one path loss exponent α is

defined, the value of which is assumed to be α = αNL = 3.75.

A. Validation of Theorem 1 on the Coverage Probability

In Fig. 3, we show the results of pcov (λ, γ) with γ = 0 dB.

As can be observed from Fig. 3, our analytical results given

by Theorem 1 match the simulation results very well, which

validates the accuracy of our theoretical analysis. From Fig. 3,

we can draw the following observations which are inline with

our discussion in Section I:

• For the single-slope path loss model with L = 0m, the BS

density does NOT matter, since the coverage probability

approaches a constant for UD SCNs [4].

• For the 3GPP Case 1 path loss model with L = 0m,

the BS density DOES matter, since that coverage prob-

ability will decrease as λ increases when the network

is dense enough, e.g., λ > 20BSs/km2, due to the

transition of a large number of interference paths from

NLoS to LoS [10]. When λ is tremendously large, e.g.,

λ ≥ 103 BSs/km2, the coverage probability decreases

at a slower pace because both the interference and the

Fig. 4. AASE (λ, γ0) vs. λ with γ0 = 0 dB.

signal powers are LoS dominated, and thus the coverage

probability approaches a constant related to αL [4, 10].

• For both path loss models, when L = 8.5m, the coverage

probability shows a determined trajectory toward zero in

UD SCNs due to the cap on the signal power introduced

by the non-zero L as explained in Theorem 2. In more

detail, for the 3GPP Case 1 path loss model with λ =
104 BSs/km2, the coverage probability decreases from

0.15 when L = 0m to around 10−5 when L = 8.5m.

B. The Theoretical Results of the ASE

In Fig. 4, we show the results of AASE (λ, γ0) with γ0 =
0 dB. Fig. 4 is essentially the same as Fig. 1 with the same

marker styles, except that the results for the single-slope path

loss model with L = 8.5m are also plotted. From Fig. 4, we

can confirm the key observations presented in Section I:

• For the single-slope path loss model with L = 0m, the

ASE performance scales linearly with λ [4]. The result

is promising, but it might not be the case in reality.

• For the 3GPP Case 1 path loss model with L = 0m, the

ASE suffers from a slow growth or even a small decrease

when λ ∈ [20, 200] BSs/km2, i.e., the ASE Crawl [10].

After the ASE Crawl, the ASE grows almost linearly

again as the network further evolves to an UD one, e.g.,

λ > 103 BSs/km2 [10].

• For both path loss models with L = 8.5m, the ASE suf-

fers from severe performance loss in UD SCNs due to the

ASE Crash, as explained in Theorem 2. In more detail, for

the 3GPP Case 1 path loss model with λ = 104 BSs/km2,

the ASE dramatically decreases from 3141 bps/Hz/km2

when L = 0m to 0.2 bps/Hz/km2 when L = 8.5m.

C. Factors that May Impact the ASE Crash

There are several factors that may have large impacts on

the existence/severity of the ASE Crash, e.g., various values

of L and αL, Rician fading, etc. In Fig. 5, we investigate

the performance of AASE (λ, γ0) for 3GPP Case 1 under the

assumptions of L = 3.5m [3] or αL = 1.09 [10] or Rician



Fig. 5. AASE (λ, γ0) vs. λ with γ0 = 0 dB and various assumptions.

fading [6]2. Due to the significant accuracy of our analysis,

we only show analytical results of AASE (λ, γ0) in Fig. 5.

Our key conclusions are summarized as follows:

• Decreasing L from 8.5 m to 3.5 m (BS antenna height

being 5 m) helps to alleviate, but cannot remove the

ASE Crash unless L = 0, as explained in Theorem 2.

From Fig. 5, the ASE with L = 3.5m peaks at around

λ = 3000BSs/km2, but it still suffers from a 60 % loss

compared with the ASE with L = 0m at that BS density.

• Decreasing αL helps to alleviate the ASE Crash because

it softens the SIR crash in (21). However, it aggravates

the ASE Crawl by showing an obvious ASE decrease

when λ∈[20, 80] BSs/km2 due to the drastic interference

transition from NLoS to stronger LoS with αL=1.09 [10].

• From the simulation results, we can see that Rician

fading makes the ASE Crash worse, which takes effect

early from around λ = 400BSs/km2. The intuition is

that the randomness in channel fluctuation associated

with Rician fading is much weaker than that associated

with Rayleigh fading due to the large K factor in UD

SCNs [6]. With Rayleigh fading, some UE in outage

might be opportunistically saved by favorable channel

fluctuation of the signal power, while with Rician fading,

such outage case becomes more deterministic due to lack

of channel variation, thus leading to a severer ASE Crash.

D. A Novel BS Deployment with UE-Height Antennas

Based on our thought-provoking discovery, we make the

following recommendation to vendors and operators around

the world: The SCN BS antenna height must be lowered to the

UE antenna height in 5G UD SCNs, so that the ASE behavior

of such networks would roll back to our previous results in [9,

10], thus avoiding the ASE Crash. Such proposed new BS

deployment will allow to realize the potential gains of UD

2Note that here we adopt a practical model of Rician fading in [6], where
the K factor in dB scale (the ratio between the power in the direct path and
the power in the other scattered paths) is modeled as K[dB] = 13− 0.03w,
where w is the 3D distance in meter.

SCNs, but needs a revolution on BS architectures and network

deployment in 5G. The new R&D challenges in this area are:

1) New BS architectures that are anti-vandalism/anti-

theft/anti-hacking at low-height positions.

2) Measurement campaigns for the UE-height channels.

Note that at such height there is an unusual concentration

of objects, such as cars, foliage, etc.

3) Implications of fast time-variant shadow fading due to

random movement of UE-height objects, e.g., cars.

4) Terrain-dependent network performance analysis.

5) New inter-BS communications based on ground waves.

6) For macrocell BSs with a large L, whose BS antenna

height cannot be lowered to the UE antenna height,

the existing network performance analysis for hetero-

geneous networks may need to be revisited, since the

interference from the macrocell tier to the SCN tier may

have been greatly over-estimated due to the common

assumption of L = 0.

V. CONCLUSION

We presented a new and significant theoretical discovery,

i.e., the serious problem of the ASE Crash. If the absolute

height difference between BS antenna and UE antenna is

larger than zero, then the ASE performance will continuously

decrease with network densification for UD SCNs. The only

way to fully overcome the ASE Crash is to lower the SCN

BS antenna height to the UE antenna height, which will

revolutionize the approach of BS architecture and deployment

in 5G. In our future work, we will also study how the usage

of very directive antennas and/or the usage of sophisticated

idle modes at the small cell BSs can help to mitigate the ASE

Crash.
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