| Project Title: | Smart Meter
Infrastructure
(Customer Meter) | , at | | Socket | A Base | A Base | |---------------------|---|----------------------|---------------|--------|--------|---------| | Project Short Name: | | Self-Contained Meter | 1 Phase | - | | | | Project Manager: | | | 3 Phase | 1 | | | | | | CT Meter | 1 Phase (5K) | / | | | | s.22 | | | 3 Phase (40K) | 4 | - |
- < | | HAZARD | ORGANIZA | TION | | ACCIDENT SEQUEN | CE | | | | | RIS | K ANALYS | IS | | | | | Worker | | | RESIDUAL | RISK ANAL | YSIS | | | | | CONT | ROL MEASUR | E MONITORING | | |----------------------|--|---|--|--|---|--|---|-----------------------------|-----------------------------------|---|------------------------------|-----------------------------------|---|-----------------------------|-----------------------------------|---|-------------------------------|---|--------------------------------------|--|---|--------------------------------------|-----------------------------|--|---|--|------------------------|---------------------------------------|--|---------------------------------------| | Hazar
d ID
No. | azard Type
(select) | Equipment /
Area /
System | Undestrable Event /
Failure Modes | Cause | Consequence | Current
Control
Measures | Worker
Severity
Level
(select) | Worker
Freq.
(select) | Worker
Risk
Level
(auto) | Public
Severity
Level
(select) | Public
Freq.
(select) | Public
Risk
Level
(auto) | Enviro
Severity
Level
(select) | Enviro
Freq.
(select) | Enviro
Risk
Level
(auto) | Proposed Control
Measures Under
Consideration | Residual
Severity
Level | Worker
Residual
Freq.
(select) | Worker
Residual
Risk
(auto) | Public
Residual
Severity
(select) | Public
Residual
Freq.
(select) | Public
Residual
Risk
(auto) | Enviro
Severity
Level | Enviro.
Freq.
(select
from list | | Control
Measure
Status
(select) | Next
Action
Date | Completed
Control
Measures | Risk Reduction
Comments /
Documentation | Control
Owner
(name /
group) | | Existin | ng Hazar | ds : Desig | n | | | | | | | | | | | | | | (KPIPCI) | | | | | | (select | | | | | (select) | | groupy | | E | lectronic : | Self-Contair | ned (1Ph & 3 Ph) | Socket Type Meter: | Design | System
Failure:
(Electrical)
Equipment
Failure | Electronic
Self
Contained
(1Ph & 3Ph)
Socket Type
Meter
(<=200A,
600V) | - Projectiles off of
the explosion hit a
member of the | caused by BCH system - Contact of transmission lines (i.e. 69kV) to distribution line (i.e. 25kV or 12kV), | meter bases. Electrical
mechanical meter no
issue. Customer digital | Identified | | | | S6 -
Fatality | L2 - 1 /
100,000
years | 4 | | - | | Perform studies on incidents at Mission – perhaps there is type of meter that is more prone to failure | | | | | | | | | | No Longer
Required | | System
Controls -
Competence | | | | .1 | | - | 46 | | | The Control of Co | 6 | | | | | | | | | Better meter design
- MOV more tolerant
to high energy | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | | | | In Service | | Engineered
Controls -
Dissipate | ITRON meters have
better over-voltage /
surge protection
design (need
specification / test
report) | | | 1 | | | | | | | | | | | | | | | | Better meter design
- Contain explosion
with barrier | 18 | | | S5 -
Permanent
disability | L2 - 1 /
100,000
years | 3 | | | | Not
Selected | | Engineered
Controls -
Contain | Not practical | | | 1 | | | | | | | | | | | | | | | | Better meter design - Dissipate explosion with a break-off plate (directs explosion) | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | | 257 | ń | Not
Selected | | Design
Controls -
Substitute | There was a plug (weak spot) in sensitive area that could be used as "pressure reliel?" or "sacrifical part" but Measurement Canada disallowed such plug and it is now welded shut | | | | 14 | | | - | | | | | | | | | | | | Minimize Distribution
Underbuild Design | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | | | | In Service | | Design
Controls -
Minimize | Need confirmation | | | 1 | | | | | | | | | | | | | | | | System/ primary surge arresters - Distribution surge arrester (ZnO) failure rate at 0.1%, while high voltage is even lower (ref. IMMR Vol. 11 No. 1, January-February 2003) | | | | S6 - Fatality | L0 - 1 /
10,000,000
yrs | 2 | | | | In Service | | Engineered
Controls -
Dissipate | s.22 Need confirmation | | | 1 | | | | | | | | | | | | | | | | Individual home surge
arresters | | | | S6 - Fatality | L0 - 1 /
10,000,000
yrs | 2 | - | | | Not
Selected | | Engineered
Controls -
Dissipate | Non-effective, typical
home surge arresters
are for short duration
surge, this type of
fault will have longer
duration | 5 | | 1 | | | | | | | | | 2 | | | | | | | Fuse on secondary transformer | | | | S6 - Fatality | L0 - 1 /
10,000,000
yrs | 2 | | | | Not
Selected | | Design
Controls -
Eliminate | Not a BCH or North
American practice | * | | AZAR | ORGANIZA | TION | | ACCIDENT SEQUEN | ICE | | | | | RIS | K ANALYSI | s | | | | | | | | RESIDUAL | RISK ANAL | YSIS | | | | | CONT | | E MONITORING | | |---------------|--|---|--|---|---|--------------------|--------------------|-------------------|-----------------|--------------------|------------------------------|-----------------|--------------------|-------------------|-----------------|--|-------------------------------|--------------------|--------------------|----------------------|--------------------------------|--------------------|------------------------------|-----------------------|----------------|--------------------|----------------|---------------------------------------|--|-------------------| | lazar
d ID | lazard Type | Equipment /
Area / | Undesirable Event / | Cause | Consequence | Current | Worker
Severity | Worker | Worker
Risk | Public
Severity | Public | Public
Risk | Enviro
Severity | Enviro | Enviro
Risk | Proposed Control | Residual | Worker
Residual | Worker
Residual | Public
Residual | Public
Residual | Public
Residual | Enviro | Enviro.
Freq. | Enviro
Risk | Control
Measure | Next | Completed | Risk Reduction | Control | | No. | (select) | System | Failure Modes | Cause | Consequence | Measures | Level
(select) | Freq.
(select) | Level
(auto) | Level
(select) | Freq.
(select) | Level
(auto) | Level
(select) | Freq.
(select) | Level
(auto) | Measures Under
Consideration | Severity
Level
(select) | Freq.
(select) | Risk
(auto) | Severity
(select) | Freq.
(select) | Risk
(auto) | Severity
Level
(select | (select
from list) | Level | Status
(select) | Action
Date | Control
Measures
(select) | Comments /
Documentation | (name /
group) | | | System
Failure:
(Electrical)
Equipment
Failure | Electronic
Self
Contained
(1Ph & 3Ph)
Socket Type
Meter
(<=200A,
600V) | Fire at customer
home initiated at
meter (outside of
house) | - Contact of
transmission lines (i.e.
69kV) to distribution
line (i.e. 25kV or 12kV),
or vice versa, caused | meter bases. Electrical | None
identified | | | | S6 -
Fatality | L3 - 1 /
10,000
years) | 4 | | | | System/ primary
surge arresters - Distribution surge
arrester (2n0) failure
rate at 0.1%, while
high voltage is even
lower (ref. I/MMR Vol.
11 No. 1, January-
February 2003) | | | | S6 - Fatality | L0 - 1 /
10,000,000
yrs | 2 | | | | in Service | | Engineered
Controls -
Dissipate | Need confirmation | 0.33 | | | | | | | | | | | | | | | | | | Minimize Distribution
Underbuild Design | | | | S6 - Fatality | LO - 1 /
10,000,000 | 2 | | | | In Service | | Design
Controls -
Minimize | Need confirmation | s.22 | | 2 | | | | | | | | | | | | | | | | Individual home surge
arresters | | | | S6 - Fatality | L0-1/ | 2 | | | | Not
Selected | | Engineered
Controls -
Dissipate | Non-effective, typical
home surge arresters
are for short duration
surge, this type of
fault will have longer
duration | | | 2 | | | | | | | | | | | | | | | | Fuse on secondary transformer | | | | S6 - Fatality | L0 - 1 /
10,000,000
yrs | 2 | | | | Not
Selected | | Design
Controls -
Eliminate | Not a BCH or North
American practice | | | 2 | | | | | | | | | | | | | | | | Use non-flammable material in the meter | | | | S6 - Fatality | L2-1/
100,000
years | 4 | | | | In Service | | Design
Controls -
Minimize | ITRON meters have
UL XXX Flammability
rating Meters are not UL /
CSA certified, but this
may change to
consider ANSI stds
as equivalent | | | 2 | | | | | | | | | | | | | | | | Establish safety inspection programs on all meters periodically to ensure installations are still compliant to codes (i.e. Area around outlet must be cleared to 1 m to minimize fuel for burning (i.e. vegetation)) | | | | S6 - Fatality | L2 - 1 /
100,000
years | 4 | | | | Still in
Review | | Design
Controls -
Minimize | s.22 | | | | System
Failure:
(Electrical)
Equipment
Failure | Electronic
Self
Contained
(1Ph & 3Ph)
Socket Type
Meter
(<=200A,
600V) | Fire inside customer
home initiated at
home outlet (in
house) | - Contact of
transmission lines (i.e.
69kV) to distribution
line (i.e. 25kV or 12kV),
or vice versa, caused | Public Injury Properly damage Public Intil 79529 [2009] - Digital CIS type meter blackened & blown from meter bases. Electrical mechanical meter no issue. Customer digital equipment damaged and power outlet blackened (optential fire) | None
Identified | | | | S6 -
Fatality | L4 - 1 /
1,000
years | 5 | | | | System/ primary surge arresters - Distribution surge arrester (2n0) failure rate at 0.1%, while high voltage is even lower (ref. INMR Vol. 11 No. 1, January-February 2003) | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | | | | In Service | | Engineered
Controls -
Dissipate | s.22 | | | 1 | | | | | | | | | | | | | | | | Minimize Distribution
Underbuild Design | | | | S6 - Fatality | L0 - 1 /
10,000,000 | 2 | | | | In Service | | Design
Controls -
Minimize | Need confirmation | | | 3 | | | | | 9 | | | | | | | | | | 2 | Individual home surge
arresters | | | | 96 - Fatality | L1-1/ | 3 | | | | Not
Selected | | Engineered
Controls -
Dissipate | Non-effective, typical
home surge arresters
are for short duration
surge, this type of
fault will have longer
duration | | | 3 | | | | | | | | | | | | | | | | Fuse on secondary transformer | | | | S6 - Fatality | L1-1/
1,000,000
years | 3 | | | - | Not
Selected | | Design
Controls -
Eliminate | Not a BCH or North
American practice | | | AZARD ORGANIZ | ATION | | ACCIDENT SEQUEN | CE | | | | | RIS | K ANALYS | IS | | | | | | | | RESIDUA | RISK ANAL | YSIS | | | | | CON | TROL MEASUR | RE MONITORING | | |--|---|---|--|----------------------------------|--|---|-----------------------------|-----------------------------------|---|------------------------------|-----------------------------------|---|-----------------------------|-----------------------------------|--|---|---|--------------------------------------|--|---|--------------------------------------|--|---|-----------------------------------|--|------------------------|--|---|---------------------------------------| | Hazard Type
(select) | Equipment /
Area /
System | Undesirable Event /
Failure Modes | Cause | Consequence | Current
Control
Measures | Worker
Severity
Level
(select) | Worker
Freq.
(select) | Worker
Risk
Level
(auto) | Public
Severity
Level
(select) | Public
Freq.
(select) | Public
Risk
Level
(auto) | Enviro
Severity
Level
(select) | Enviro
Freq.
(select) | Enviro
Risk
Level
(auto) | Proposed Control
Measures Under
Consideration | Residual
Severity
Level
(select) | Worker
Residual
Freq.
(select) | Worker
Residual
Risk
(auto) | Public
Residual
Severity
(select) | Public
Residual
Freq.
(select) | Public
Residual
Risk
(auto) | Enviro
Severity
Level
(select | Enviro.
Freq.
(select
from list) | Enviro
Risk
Level
(auto) | Control
Measure
Status
(select) | Next
Action
Date | Completed
Control
Measures
(select) | Risk Reduction
Comments /
Documentation | Control
Owner
(name /
group) | | 3 | | | | | | | | | | | | | | | Establish safety
inspection programs
on all meters
periodically to ensure
installations are still
compliant to codes
(i.e. Area around
outlet must be cleared
to 1 m to minimize fuel
for burning (i.e.
vegetation)) | | | | S6 - Fatality | L3 - 1 /
10,000
-years) | 4 | | | | Still in
Review | | Design
Controls -
Minimize | s.22 | | | System Failure: (Electrical) Equipment Failure | Electronic
Self
Contained
(1Ph & 3Ph)
Socket Type
Meter
(<=200A,
600V) | - Fire/ Propagation
of fault to meter or
meter base | Other system faults
(i.e. pole transformer
failures, UG cable fault,
etc)
nm #65974 [2006],
73937 [2007] | Public Injury
Property damage | None
identified | | | | S6 -
Fatality | L4 - 1 /
1,000
years | 5 | | | | System/ primary surge arresters - Distribution surge arrester (ZnO) failure rate at 0.1%, while high voltage is even lower (ref. INMR Vol. 11 No. 1, January-February 2003) | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | 22 | | | In Service | | Design
Controls -
Minimize | Need confirmation | | | | | | | | | | | | | | | | | | Minimize Distribution
Underbuild Design | | | | S6 - Fatality | L0 - 1 /
10,000,000
yrs | 2 | | | | In Service | | Design
Controls -
Minimize | Need confirmation | | | Work Environment High Electrica Potential | Electronic
Self
Contained
(19h & 3Ph)
Socket Type
Meter
(~=200A,
600V) | Fire in meter | Meter measuring on the line side and fault current for this line can reach above 10,000A, which can damage the meter Novehere in design shows that it has considered fault current in designing meter location | Worker injury | Only Self Contained that is rated 300V or less and current 200A or less, with fault current less than 10,000A can be wired hot Ret. Requirement 1 for Secondary Voltage Revenue Metering (730V and less), 2010 | | | | S6 -
Fatality | L3 - 1 /
10,000
years) | 4 | | | | Perform through fault testing/20 to 25kV) with meters | | | | S1 - Near
miss | L4 - 1 /
1,000 years | 1 | | | | In Service | | | \$.22 @ 2 to 3 kA, disconnect switch become fused extreme fault levels, testing is inconclusive. Need test report / documentation | | | | | | | | | | | | | | | | | | Meters are designed
to ANSI standards
which can withstand
10,000A for 4 cycles
(breakers would
activate within 1
cycle) - EXCEPT IN
DOWNTOWN
VICTORIA | | | | S1 - Near
miss | L4 - 1 /
1,000 years | 1 | | | | In Service | | | S.22 Need documentation from | | | | | | | | | | | | | | | | | | Special Distribution
Instructions to install
NETWORK meters,
and not typical meters
for Downtown Victoria | | | | S1 - Near
miss | L5 - 1 / 100
years | 1 | | | | In Service | | | Need reference to DI from | | | Common t | ALL Existi | ng CT Meters: De | esign | • | HAZAR | D ORGANIZA | TION | | ACCIDENT SEQUEN | NCE | | | | | RIS | K ANALYSI | IS | | | | | | | | RESIDUAI | RISK ANAL | YSIS | | | | | CON | | MONITORING | | |----------------------|--|---|--|--|--|---|---|-----------------------------|-----------------------------------|---|-----------------------------|-----------------------------------|---|-----------------------------|-----------------------------------|---|---|---|--------------------------------------|--|---|--------------------------------------|--|---|-----------------------------------|--|------------------------|---------------------------------------|---|----------------------------| | lazar
d ID
No. | Hazard Type
(select) | Equipment /
Area /
System | Undesirable Event
Failure Modes | Cause | Consequence | Current
Control
Measures | Worker
Severity
Level
(select) | Worker
Freq.
(select) | Worker
Risk
Level
(auto) | Public
Severity
Level
(select) | Public
Freq.
(select) | Public
Risk
Level
(auto) | Enviro
Severity
Level
(select) | Enviro
Freq.
(select) | Enviro
Risk
Level
(auto) | Proposed Control
Measures Under
Consideration | Worker
Residual
Severity
Level
(select) | Worker
Residual
Freq.
(select) | Worker
Residual
Risk
(auto) | Public
Residual
Severity
(select) | Public
Residual
Freq.
(select) | Public
Residual
Risk
(auto) | Residual
Enviro
Severity
Level
(select | Enviro.
Freq.
(select
from list) | Enviro
Risk
Level
(auto) | Control
Measure
Status
(select) | Next
Action
Date | Completed Control Measures (select) | Risk Reduction
Comments /
Documentation | Owner
(name a
group) | | 6 | System
Failure:
(Electrical)
Equipment
Failure | 1 phase & 3
phase CT
Meter | - Fire caused by
excessive heat due
to overcurrent in the
meter | - Contact of
transmission lines (i.e.
69kV) to distribution
line (i.e. 25kV or 12kV)
or vice versa, caused | Public Injury Property damage n Public nnu# 79529 (2009) - Digital CIS type meter blackened & blown from meter bases. Electrical mechanical meter no issue. Customer digital equipment damaged and power outlet blackened (potential fire) |]
None Identif | lied | G
- H | | S6 -
Fatality | L4 - 1 /
1,000
years | 5 | | | | Perform studies on incidents at Mission - perhaps there is type of meter that is more prone to failure | | | | | | | | | | No Longer
Required | | System
Controls -
Competence | | | | 6 | | | | | | | | | | | | | | | | System/ primary surge arresters - Distribution surge arrester (ZnO) failure rate at 0.1%, while high voltage is even lower (ref. INMR Vol. 11 No. 1, January-February 2003) | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | | | | In Service | | Engineered
Controls -
Dissipate | - | | | 6 | | | | | | | | | | | | | | | | Individual home surge
arresters | | | | S6 - Fatality | L1 - 1 /
1,000,000
years | 3 | | | | Not
Selected | | Engineered
Controls - | | | | 6 | | | | | | | | | | × | | | | | | Fuse on secondary transformer | | | | S6 - Fatality | L1 - 1 / | 3 | | | | Not
Selected | | Dissipate
Design
Controls - | | | | 6 | | | | | 11 | | | | | | 291 | | | | | Use non-flammable material in the meter | | | | S6 - Fatality | L3 - 1 /
10,000 | 4 | | | | Still in
Review | | Eliminate
Design
Controls - | | | | | | | | 24 | | | | | | | | | | | | | | | | | years) | | | | | | | Minimize | | | | | Existing El | ectronic CT | (1Ph) Socket Ty | pe Meter: Design | | | | | Maria Maria | | | 240 (6.40 | | | E BLANG SEC MU | | | | | | | | | | | | | | | | | | Existing El | ectronic CT | (3Ph) A-Base Tv | pe Meter: Design | - Included the second s | | | | | | | | | | | | | (4/7.51 E | | | | | | | | | | | | | | | 626333 | | | ation and Main | TO SERVICE STREET, STR | 0 | | | | | | | | | | | | BEST CONTRACTOR | | | | | | | | | | | | | | | | Electronic | Seif-Contail | nea (1Ph & 3 Ph) | Socket Type Meter | : Operation & Mainte | nance | | | | | | | | | | | 100 | | | | | | | | | | | | | | | 7 | System
Failure:
(Electrica)
Equipment
Failure | Electronic
Soft Soft Soft Socket Type
Meter
(<=200A, 600V) | | Installing / pulling mete
under load
mm # 8004 [2010] -
installing meter, are
flash
- PLT sustained burns
on forearm | r
Worker injury | Customers are instructed to have their main switch OPEN prior to meter connection (customers may not comply) More a problem for disconnect. PPE (safety glasses, rubber gloves) | S3 -
Temporary
disability | L5 - 1 /
100 years | 3 | | | | | | | Energy (Not Demand) Smart meters - Option to use disconnect switch to disconnect wide to disconnect wide to disconnect meter from any possible load connections before pulling or installing meter. (although the normal practice is to open their main switch) - here are other logitics problems logitics problems disconnect switch - firmitarly fer- individual-meter meters witch OPEM. Standard procedure is | S0 - Near
miss | L5-1/100
years | | | | | | | | Still in
Review | | Design
Controls -
Minimize | | | | | | | • | | | | | | | | | | | | | Standard procedure is
to ask customer to
open their main switch
(remove the load), do
the work with the
meter, and then
reinstate the load
gradually | S0 - Near
miss | L5 - 1 / 100
years | 1 | | | | | | | In Service | | System
Controls -
Competence | | | SMI (customer meter) HL D11.xls 4 | IAZAR | D ORGANIZ | ZATION | | ACCIDENT SEQUENC | CE | | | | | RIS | SK ANALYSI | S | | | | | | | | RESIDUAL | RISK ANAL | YSIS | | | | | CON | TROL MEASUR | E MONITORING | | |----------------------|--|-----------------------------------|---|---|---------------|--|---|--------------------------------|-----------------------------------|---|-----------------------------|-----------------------------------|---|-----------------------------|-----------------------------------|---|---|---|--------------------------------------|--|---|--------------------------------------|--|--|-----------------------------------|--|------------------------|--|---|----------------------------| | lazar
d ID
No. | Hazard Typ
(select) | e Equipment
Area /
System | Undesirable Event /
Failure Modes | Cause | Consequence | Current
Control
Measures | Worker
Severity
Level
(select) | Worker
Freq.
(select) | Worker
Risk
Level
(auto) | Public
Severity
Level
(select) | Public
Freq.
(select) | Public
Risk
Level
(auto) | Enviro
Severity
Level
(select) | Enviro
Freq.
(select) | Enviro
Risk
Level
(auto) | Proposed Control
Measures Under
Consideration | Worker
Residual
Severity
Level
(select) | Worker
Residual
Freq.
(select) | Worker
Residual
Risk
(auto) | Public
Residual
Severity
(select) | Public
Residual
Freq.
(select) | Public
Residual
Risk
(auto) | Enviro
Severity
Level
(select | Enviro.
Freq.
(select
from list | Enviro
Risk
Level
(auto) | Control
Measure
Status
(select) | Next
Action
Date | Completed
Control
Measures
(select) | Risk Reduction
Comments /
Documentation | Owner
(name /
group) | | | | | | | | | | | | | | | | | | Another standard
practice is to ask PLT
to disconnect from the
primary or secondary
side if necessary | S0 - Near
miss | L5 - 1 / 100
years | 1 | | | | | | | In Service | | System
Controls -
Competence | | | | 7 | | | | | | | | | | | | | | | | Wear face shield | S2 -
Treatment
by medical
professiona | | 2 | | | | | | | In Service | | PPE -
Personal
Barrier | 5 | | | 7 | | | | | | | | H S | | | | | | | | Use meter puller to
pull meter (adds
distance between
worker and flash) | S2 -
Treatment
by medical
professiona | L5 - 1 / 100
years | 2 | | | | | | | In Service | | System
Controls -
Competence | | | | | 0 | 4- 811 F-1-4 | | 111.1.4 | Common | to ALL Exist | ing C1 Meters: Op | peration and Mainte | nance | | | | | | | | | | | | Γ | | I | | Ī | | | | | | | | | | | | Work
Environmen
High Electric
Potential | phase C1 | | Meter was not shorted
before removal causing
a build up of voltage on
the terminals | Worker injury | Red label on
meter noting
that this is a
CT meter
PPE (rubber
gloves) | S4 -
Permanent
disability | L5 - 1 /
100 years | 3 | | | | | | | Self shorting meter
socket (meter will
automatically be
shorted when meter is
being pulled from the
socket) | S4 -
Permanent
disability | L2 - 1 /
100,000
years | 2 | | | | | 41 | | Still in
Review | | Design
Controls -
Eliminate | | | | 8 | | | | | 1, 1, 2, 3 | | | | | | | | | 2 | > | Lock mechanism to
secure meter and
prevent meter from
detaching if meter has
not been shorted | S4 -
Permanent
disability | L2 - 1 /
100,000
years | 2 | | | | | | | Still in
Review | | Design
Controls -
Eliminate | ¢. | | | 9 | Work
Environmen
Poor
Accessibility | phase C1 | Delayed Emergency
Response | CT meters located at a
low traffic area of the
building (i e. if worker
working alone, no one
may notice for days if
worker is injured) | Worker injury | Call check | S3 -
Temporary
disability | L4-1/
1,000
years | 2 | | | | | | | None required | | | | | | | | | | | | | | | | 10 | Work
Environmen
High Electric
Potential | phase C1 | Worker contacts line
voltage while
working with test
block | ~6 transformer meters in the system were not equipped with potential transformer, hence, worker would be working with primary voltage (347/800V) on the test block while expecting secondary voltage (120/240V) | Worker injury | None
identified | S5 -
Fatality | L1 - 1 /
1,000,000
years | 2 | | | | | | | Smart meter - Standardize and replace all meters | S0 - Near
miss | L0 - 1 /
10,000,000
yrs | 1 | | | | | | | Still in
Review | | Design
Controls -
Eliminate | | | | 10 | 2 | | 3 | | | | . • | | | | | | | | | Work procedure:
Double check
voltages before
commencing job
(make sure hand-held
meter can take
347/600V input) | S5 - Fatality | L0 - 1 /
10,000,000
yrs | 1 | | | | | | | Still in
Review | | System
Controls -
Competence | | | Existing CT (1 Phase) Socket Type Meters: Operation and Maintenance | AZARI | ORGANIZA | TION | 190001180000000000000000000000000000000 | ACCIDENT SEQUENC | CE | | | | | RIS | K ANALYSIS | | | | | | | | RI | ESIDUAL | RISK ANAL | YSIS | | _ | | | CONT | ROL MEASURE | E MONITORING | | |----------------------|------------------------|---------------------------------|--|---|---------------|--|---|------------------------------|-----------------------------------|---|------------|-----------------|--|-----------------------------|-----------------------------------|---|--|---|-------------|---|---|--------------------------------------|---|---|---------------|--|------------------------|------------------------------------|---|------------------------------------| | lazar
d ID
No. | azard Type
(select) | Equipment /
Area /
System | Undesirable Event /
Failure Modes | Cause | Consequence | Current
Control
Measures | Worker
Severity
Level
(select) | Worker
Freq.
(select) | Worker
Risk
Level
(auto) | Public
Severity
Level
(select) | Freq. | Risk S
Level | Enviro
severity
Level
select) | Enviro
Freq.
(select) | Enviro
Risk
Level
(auto) | Proposed Control
Measures Under
Consideration | Worker
Residual
Severity
Level | Worker
Residual
Freq.
(select) | Residual Re | Public
esidual
everity
select) | Public
Residual
Freq.
(select) | Public
Residual
Risk
(auto) | Residual
Enviro
Severity
Level | Enviro.
Freq.
(select
from list) | Risk
Level | Control
Measure
Status
(select) | Next
Action
Date | Completed Control Measures | Risk Reduction
Comments /
Documentation | Contro
Owner
(name
group) | | 11 | Other | 1 Phase
Socket CT
Meter | - Explosion and fire
(meter faulted)
- Projectiles off of
the explosion | CT (1 ph, socket type) meter and normal meter can be installed into the same base inj# 75023 (2007)-worker inserted meter when CT meter should have been installed and faulted | Worker injury | Worker training CT meters have additional labelling on them Electronics will show no display due to different wiring in meters | S5 -
Fatality | L3 - 1 /
10,000
years) | 3 | | | | | | | Different base/ jaw
configuration between
meters (i.e. CT would
have 5 jaws white self-
contained would have
4) | | L0 - 1 /
10,000,000
yrs | | | | | (select | | | Still in
Review | | Design
Controls -
Minimize | | group | 1 | | | | | | | | | | | | | | E | xisting C | T (3 Phase) | A-Base Type Mete | ers: Operation and I | Maintenance | | | | | | | | | | | | | | etakuartaa | | | | | | Allah Kalik | | | | | | | 12 | Other | 3 Phase A-
Base CT
Moter | Worker exposed to
arc flash or contact
electrical potential | Worker accidentally contacted energized components or cause ph-ph fault of energized components or cause ph-ph fault of energized components in the meter enclosure while performing meter tests (clip onto wire). nm #75789 [2008] - PLT accidentally swung in metering wire into energized CTs mm #2407 [2006]. Meter tech contacted by with other ph wire nm #1661 [2004] - test probe came loose and contacted energized part in #1105 [2001] - Meter tech contacted energized energized buss with uninsuitated tool | Worker injury | Worker
training
Use of
cover-ups | S4 -
Permanent
disability | L5 - 1/
100 years | 3 | | | | | | | As part of SMI,
convert 3-ph CT A-
Base melet ro socket
dynamics and continuous and continuous
meter and reduce
need for and continuous and
handtools during
meter work) | S4 -
Permanent
disability | L2 - 1 /
100,000
years | 2 | | | | | | | Still in
Review | | Design
Controls
Minimize | | | | 13 | Other | 3 Phase A-
Base CT
Meter | (meter faulted)
- Projectiles off of | Worker misconnected
cables coming off the
test box into the meter
and energize meter | Worker injury | Worker
training | S4 -
Permanent
disability | L3 - 1 /
10,000
years) | 2 | 71 1227 | | | A 8 7 E | | | As part of SMI,
convert 3-ph CT A-
Base meter to socket
type as well (eliminate
need for connecting
cables 1 by 1 during
meter work) | S5 - Fatality | L0 - 1 /
10,000,000
yrs | 1 | | | | | | | Still in
Review | C | Design
Controls -
Eliminate | | | | 14 | Other | 3 Phase A-
Base CT
Meter | Worker exposed to electric potential | Switch on test box did
not short the CT and
worker removed meter
causing a build up of
voltage on the
terminals | Worker injury | Worker
training | S4 -
Permanent
disability | L5 - 1 /
100 years | 3 | | | | | | | As part of SMI,
convert 3-ph CT A-
Base meter to socket
type as well (this
helps worker to be
further away from arc
when pulling meter)
However, this does
not help with wiring
jobs | S2 -
Treatment
by medical
professiona | L5 - 1 / 100
years | 2 | | | | 2 | | | Still in
Review | | Design
Controls -
Minimize | | | | 14 | | | | | | | * | | | | | | | | | Use clip-on probes to
check if the meter is
actually shorted | S1 - First
aid | L5 - 1 / 100
years | 1 | | | | | | | Still in
Review | | System
Controls -
Competence | | | | \rightarrow | | | | | | | (| 1 7 | | | 11 | | | | | | | | | | | | | | 1 | | $\overline{}$ | - | | + |