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Abstract

Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of medical conditions.
Concurrently, our knowledge of LILT mechanisms continues to expand. We are now aware of LILT’s potential to
induce cellular effects through, for example, accelerated ATP production and the mitigation of oxidative stress.
In clinical use, however, it is often difficult to predict patient response to LILT. It appears that cellular reduction=
oxidation (redox) state may play a central role in determining sensitivity to LILT and may help explain vari-
ability in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species (ROS)
production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. Consequently, assessment of
tissue redox conditions in vivo may prove helpful in identifying responsive tissues. A noninvasive redox measure
may be useful in advancing investigation in LILT and may one day be helpful in better identifying responsive
patients. The detection of biophotons, the production of which is associated with cellular redox state and the
generation of ROS, represents just such an opportunity. In this review, we will present the case for pursuing
further investigation into the potential clinical partnership between biophoton detection and LILT.

Introduction

Low-intensity light therapy (LILT) is showing promise
in the treatment of a wide variety of conditions, including

the treatment of delayed wound healing, arthritic pain, and
acute stroke.1–4 Our understanding of LILT mechanisms
continues to progress, and we now know that LILT has the
potential to accelerate ATP production and mitigate oxidative
stress, which derives from excessive production of reactive
oxygen species (ROS) or a lack of antioxidant activity.5–7

Through red- and near infrared (NIR)-induced mitochondrial
stimulation, these mechanisms participate in downstream
immunomodulation in cells and tissue.8–11 Coupled with re-
ports of clinical safety and efficacy, this increased under-
standing continues to generate enthusiasm for LILT. As the
field progresses, however, we must recognize that currently,
in some individuals, it is difficult to predict clinical response.
This is further complicated by the diversity of protocols and
methodologies that have been utilized and that have reported
mixed results in the treatment of a variety of conditions,
e.g. osteoarthritis, myofascial pain, and carpal tunnel syn-
drome.3,12–15 Nonetheless, consistent investigation has dem-
onstrated that red and NIR low-intensity phototherapy can

influence cells and tissues in a wavelength-specific, intensity-
specific, energy dose-specific, and pulse frequency-specific
manner.10,11,16–19 These effects are generally oxygen depen-
dent and involve the generation of ROS.8,20,21

As we clarify our understanding of relevant molecular
mechanisms, it appears that cellular reduction=oxidation
(redox) state may play a central role in determining sensi-
tivity to LILT and may help to explain variability in patient
responsiveness.22–24 Conditions associated with pro-oxidant
states, i.e. states associated with elevated ROS production,
demonstrate increased sensitivity to LILT.25 Cellular sensitiv-
ity to red and infrared light, probably at the level of cyto-
chrome C oxidase, is influenced by cellular redox state.22,23,26

Cellular growth phase, which may also correspond to cellular
redox state, appears be another determinant of this sensitiv-
ity. In vitro and in vivo, the effectiveness of LILT varies with
cellular growth phase.2,6 Proliferating cells are in many cases
more sensitive. HeLa cells, fibroblasts, and epithelial cells all
demonstrate sensitivity to LILT, which is more pronounced
during the proliferative cellular growth phase, and in each
case, this proliferative phase is associated with elevated ROS
production.24,27–30 In vivo, such effects are further affected by
the pathophysiologic state of the treated tissue, which may
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also correspond with cellular redox state.31,32 Diabetic
wounds, which are characterized by delayed wound healing,
are an interesting case. For example, proliferating cells at the
diabetic wound site are more responsive to LILT than non-
proliferating cells.33,34 Furthermore, compared to normally
healing wounds, diabetic wounds are more responsive to
LILT.25 This difference is significant. In their study of LILT
effects on burn healing, Al-Watban and Andres reported that
light-emitting diode (LED) therapy at doses of 5, 10, 20, and
30 J=cm2, respectively, influenced healing by 6.85%, 4.93%,
24.18%, and 25.42% in non-diabetic rats and 73.87%, 76.77%,
60.92%, and 48.77% in diabetic rats, relative to their controls,
respectively.34 This increased responsiveness may be the re-
sult of elevated ROS production known to be associated with
diabetic hyperglycemia, although this proposed mechanism
has not yet been confirmed.35,36

Curiously, LILT has been associated with further transient
increases in cellular ROS production.20 As aforementioned,
we theorize that conditions characterized by pathophysio-
logical oxidative stress may demonstrate increased cellular
sensitivity to LILT. The use of LILT in the treatment of car-
diac and cerebral ischemia, both characterized by oxidative
stress, provides some insight into the beneficial effects of
LILT in settings of elevated ROS production.4,37,38 In such
conditions, the use of LILT might appear counterproductive,
as it is associated with further increases in ROS production.
However, animal studies investigating the use of LILT in the
treatment of experimentally induced cardiac and cerebral
ischemia indicate otherwise.4,37,38 In this research, LILT re-
sults in subsequent improvements in tissue survival and
function as compared to control conditions. LILT-induced
improvements in these conditions have been attributed by
Oron et al. to rapid elevation of ATP content, increased
angiogenesis, and furthermore, to increased anti-apoptotic
activity, heat shock proteins, and total antioxidants.5 These
improvements draw a comparison with more well-established
protective cellular mechanisms, which have also been stud-
ied in the setting of cardiac and cerebral ischemia, namely,
those involved in the highly conserved cellular stress re-
sponse induced by heat shock, pre- and post-ischemic con-
ditioning, and oxidative stress.39–46 This stress response is
characterized by increases in anti-apoptotic activity, heat
shock proteins, and total antioxidants.46 In the treatment of
cardiac ischemia, LILT might best be compared to the ex-
perimental technique of post-ischemic conditioning, in which
it has been shown that ischemic myocardial injury can be
reduced by cycles of re-occlusion during myocardial re-
perfusion.46 In both cases, the subsequent mitigation of oxi-
dative stress is in part initiated by the further generation of
ROS. Such increases in ROS production likely participate
in intracellular signaling by acting on a number of redox-
sensitive proteins, including redox-sensitive transcription
factors.24,46 Prior investigations show that LILT can alter the
expression of a variety of genes, including genes known to
directly or indirectly play roles in the enhancement of anti-
oxidation.28

As cellular conditions involving elevated ROS production
appear to be associated with increased LILT sensitivity, as-
sessment of tissue redox conditions in vivo may prove helpful
in identifying responsive tissues. A noninvasive redox mea-
sure may be useful in advancing investigation in LILT and
may one day be helpful in identifying responsive patients.

The detection of biophotons, whose production is also as-
sociated with the production of ROS and the cellular redox
state, represents just such an opportunity. Biophoton detec-
tion and analysis are currently being utilized to non-
invasively measure tissue redox conditions in vivo.47–49 In
this review and position paper, we will introduce relevant
biophoton research focusing on the relationship between
biophoton emission and conditions of oxidative stress. We
also include some discussion of the initial context of bio-
photon investigation. Moreover, we will present the case for
further investigation into the potential clinical partnership
between biophoton detection and LILT.

Biophoton Detection

Over the last few decades, advances in photodetection
have confirmed that many, if not all, living systems emit very
low levels of visible and near visible (ultraviolet [UV] and
near infrared [NIR]) photons.50,51 These photobiological
emissions have been described as spontaneous ultraweak
chemiluminescence, spontaneous photon emission (SPE),
and, more succinctly, as biophoton emission.

Visible and NIR spectrum biophotons, linked to electron-
excited states associated with the generation of ROS, are
most relevant to LILT and to this discussion. In contrast, the
origins of UV biophotons are less clear, and consequently,
less clinically useful at this time. UV biophotons are theo-
rized to be derived from DNA conformational changes,
amplified radical recombination reactions, delayed branch
chain reactions in amino acids, and=or direct emitters.52,53

Future research might reveal a broader role for UV biopho-
tons in cell biology.

Biophoton emission is biochemically distinct from the
more well-known phenomena of bioluminescence. Biolumi-
nescence, as in fireflies, is typically visible and involves
specialized enzymatic mechanisms, i.e. luceferin–luciferase,
to provide luminescence. In contrast, biophoton emission is
much weaker and is generally reported to be less than 1000
photons per second per cm2, several orders of magnitude
below the accepted visible level.54

Biophoton emission is closely correlated with the pro-
duction of ROS and the oxidative status of living systems.
Recent advances in photodetection have made it possible to
analyze biophoton emission. This methodology detects and
analyzes biophotons produced by metabolic reactions in
living cells. Since the early 1980s, scientists have recorded
biophoton emission from mammalian liver, heart, lung,
nerve, and muscle tissue.55–62 This has been accomplished
with photomultiplier tube technology, i.e. photomultipliers.
These photomultipliers are extremely sensitive detectors of
light in the UV, visible, and NIR ranges of the electromag-
netic spectrum. These detectors multiply the signal produced
by incident light by as much as 100 million times, enabling
single photons to be detected individually when the incident
flux of light is very low.63 In collecting this data, it must be
emphasized that the number of photons registered depends
on a variety of instrumental characteristics, including the
distance between the sample and the photomultiplier and,
moreover, the spectral sensitivity of the photomultiplier.

Photomultipliers have been used to further analyze bio-
photon emission from total organ brain and liver homoge-
nates in cell fractionation studies.64 In these analyses,
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mitochondria and submitochondrial particles have been
shown to be predominant sources of cellular biophoton
emission.65–67 Furthermore, in fractionated hepaticcell homog-
enates, microsomes (vesicular fragments of the endoplasmic
reticulum formed after the disruption and centrifugation of
cells) have also been shown to be predominant sources of
biophoton emission.66,68–72 In hepatic cells, microsomes
contain the cytochrome P450 enzymes, involved in oxidative
metabolism. In mitochondria and microsomes, biophoton
emission requires a membrane-bound electron transfer sys-
tem and can be optimized in the presence of oxygen. In order
to identify more precisely the molecular source of biopho-
tons, spectral analysis has been applied extensively to bio-
photon emission in liver, brain, lung, and heart cells and
hepatic microsomal fractions.61,64,65,68,70 Various emission
bands in the range of 400–700 nm have been found, and the
data suggest that singlet molecular oxygen, formed during
free-radical processes accompanying lipid peroxidation, may
be a major source of biophoton emission. Interestingly, the
ROS singlet oxygen is also thought to act as a signaling
molecule in the cellular response to LILT photostimulation.73

For a more comprehensive account of lipid peroxidation,
including the oxidizing species triggering and participating
in this process, the reader is referred to Boveris et al. and
Halliwell and Gutteridge.59,74

As biophoton emission has been related to the utilization
of oxygen, the generation of ROS, and the production of
electronically excited states in biological systems, it was
suggested that biophoton detection could be used as a tool
for the investigation of radical reactions and oxidative stress.
Many biochemical techniques, which focus primarily on the
measurement of biological lipid peroxidation, are now avail-
able to assess oxidative stress in living systems.75 However,
many of these techniques are invasive and inappropriate for
clinical application. In contrast, biophoton emission provi-
des, on a non-invasive basis, a signal of oxidative metabo-
lism and ROS steady-state concentration that is readily and
continuously detectable. It is possible to continuously mon-
itor the metabolism of organs in vivo with biophoton detec-
tion techniques. Thus, in the assessment of in vivo redox
status, biophoton detection may become more useful than
other assays, including indirect assays of lipid peroxidation,
such as glutathione release, electron-spin-resonance tech-
niques, or assays assessing the evolution of hydrocarbons or
malondialdehyde accumulation.76–83

Furthermore, as biophoton detection can be developed for
imaging and spatiotemporal analysis, it offers additional
perspectives. Two-dimensional biophoton imaging of a rat
brain in vivo was achieved in 1999.84 This was done using a
highly sensitive, ultra-low-noise charged-coupled device
(CCD) camera system. Kobayashi et al. demonstrated that
spatiotemporal biophoton emission in the rat brain is corre-
lated with cerebral energy metabolism and oxidative stress.84

Biophoton emission intensity in the exposed rat brain was
associated with cerebral blood flow and ROS production
in vivo. Furthermore, work with subsequently sliced rat brains
suggested that observed biophoton emission originated from
the energy metabolism of the inner mitochondrial respiratory
chain through the production of ROS. At that time, authors
remarked that the imaging of biophoton emission from a
brain constituted a novel method with the potential to ex-
tract pathophysiological information associated with neural

metabolism and oxidative dysfunction. Kobayashi et al.
credit Boveris and Cadenas et al. with suggesting the po-
tential usefulness of biophoton detection for noninvasive
monitoring of oxidative metabolism and oxidative damage
in living tissue.85,86

Biophoton detection techniques have also been used to
record ultraweak photon emission from superficially trans-
planted tumors.87–89 Recently, a CCD camera system was
used to record two-dimensional biophoton images from tu-
mors transplanted in mice.90 In these images, recorded bio-
photon emission distinguishes transplanted tumors from
surrounding tissue. This distinction may be due to increased
ROS production (including singlet oxygen, superoxide radi-
cals, hydrogen peroxide, and hydroxyl radicals) associated
with carcinogenesis and tumor promotion.91 At this point,
this recording technology is unable to demonstrate discrete
tumor boundaries as biophoton emission spreads from areas
of higher emission in this two-dimensional data. Additional
studies will be required to further establish the accuracy of
localizing biophoton tissue sources. This tumor research also
initiates needed discussion addressing biophoton tissue
penetration and the depth from which biophotons can be
detected. More research needs to be done in this area in order
to assess the transparency of living tissue with regard to
ultraweak biophoton intensities.

Biophotons and LILT

Visible and NIR biophotons and red and NIR LILT share
some interesting parallels. Both involve visible and NIR
photons, the mitochondrial electron transport chain, and the
generation of ROS, in particular, singlet oxygen. As pre-
viously reviewed, LILT can stimulate cellular metabolism,
presumably through photostimulation of elements of the
mitochondrial electron transport chain.73 Furthermore, LILT
photostimulation is thought to result in electron-excited
states and the increased generation of ROS.20

Mitochondrial ROS generation is likely one of the primary
mechanisms involved in LILT. As mentioned, Pal et al. dem-
onstrated that, in human fibroblasts, low-intensity helium–
neon laser irradiation-induced proliferation was associated
with real time transient increases in ROS production.20 Anti-
oxidant mechanisms have been shown to inhibit such LILT
effects, further implicating the role of ROS in LILT signal
transduction.23

The mitochondrial electron transport chain is a major
source of visible and infrared biophotons. In fact, the meta-
bolic processes involved in producing electronically excited
states in biophoton-producing molecules are generally derived
from oxidative metabolism accompanied by the produc-
tion of ROS.48,92 Boveris et al. report that ‘‘hydroperoxide-
supplemented cytochrome c provides a chemiluminescent
model system suitable for the elucidation of some of the
molecular mechanisms responsible for light emission’’.85

Biophoton emission increases with increased generation of
ROS by the mitochondrial electron transport chain.

Some researchers report that LILT and biophotons share
another parallel. Like LILT, biophotons may influence cells
through some form of photobiostimulation.50,93 At first
glance, this is an appealing idea yet very difficult to concep-
tualize, as the two phenomena differ vastly in their func-
tional intensities. Low-intensity lasers and LEDs are effective
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at an intensity window whose minimum is several orders of
magnitude greater than the intensity of recorded biophoton
emission. In our current understanding, this makes it diffi-
cult to link biophoton-induced effects to LILT mechanisms.
Nonetheless, this concept is derived from early biophoton
investigations, which explored the possibility of endogenous
intercellular photocommunication. This concept was born
in the 1920s when A.G. Gurwitsch first described what he
termed as ‘‘mitogenic radiation’’.94 Gurwitsch reported ex-
perimental evidence that demonstrated that dividing yeast
cells (Saccharomyces cerevisiae) emit UV light and can induce
mitosis in a chemically separated population of S. cerevisiae
cells. This was the first indication that an optical (physical)
interaction might occur between cells. For decades, a number
of researchers attempted to replicate this work and failed.

Despite the lack of convincing evidence, several labora-
tories in different countries continued to pursue systematic
investigation into this matter, using both biological tech-
niques and, as technology permitted, physical methods of
photodetection.95–107 As his controversial research inspired
this more thorough investigation, Gurwitsch’s initial work is
regarded by many as the foundation for research into the
role of biophotons in intercellular communication.

Subsequent technological advances in photodetection have
now been applied in studies of biophoton-mediated intercel-
lular communication. In 1991, Grasso et al. revived ‘‘mitogenic
radiation’’ by demonstrating that S. cerevisiae biophoton
emission appears to be capable of inducing higher rates
of gemmae formation during S. cerevisiae self-irradiation
experiments.108,109 Research into optically mediated inter-
cellular communication has been conducted primarily with
microbes and has been reviewed extensively by Trushin.93,110

Others have explored the potential role of biophotons in
intercellular interactions in neutrophils, which are inciden-
tally also sensitive to LILT.94,111 Low-intensity lasers can be
used to induce the well-described oxidative burst in neu-
trophils, which occurs in vivo during phagocytosis.112 During
neutrophil phagocytosis and oxidative burst, the generation
of ROS, involving excited singlet oxygen and excited car-
bonyl groups, leads to biophoton emission.112,113 This emis-
sion has been investigated for its potential role in optically
mediated neutrophil interactions.111 Although beyond the
scope of this discussion, some biophysicists theorize that
such communication might involve complex biophysical

mechanisms beyond those currently established in photobi-
ology.50,114 At this point, the theory that biophotons, through
some form of photobiostimulation, may influence chemical
reactions and cellular behavior needs further verification.

Human Biophoton Detection

Over the last 10 years, human biophoton emission has also
been detected and analyzed. Human biophoton emissions
demonstrate spatiotemporal differences and are linked to
ROS production and oxidative stress.115–118 Cohen and Popp
have conducted long-term systematic research of biophoton
emission from the hands and forehead in vivo using a
moveable, hanging photomultiplier.47,119 This work includes
investigations into the effects of disease states on biophoton
emission.115,120 This initial work provided the basis for a
larger systematic study initiated in 2003. This research has
yielded information on: (a) procedures for reliable mea-
surements and spectral analysis; (b) the anatomic intensity of
emission; (c) associations with biological rhythms; (d) phys-
ical and psychological influences on emission; and (e) emis-
sion in health and disease. Systematic, multisite recordings
utilizing the moveable photomultiplier system with healthy
subjects present evidence for a ‘‘common’’ human anatomic
intensity emission pattern (Fig. 1).121–123 It must be noted
that the mean (�SEM) background noise was 6.0� 0.4 cps
(photon count rate per second). This suggests that, under the
given experimental conditions, the basic spontaneous emis-
sion of the body lies in the range of 15 cps (less than
1 cps=cm2 skin surface). The reliability of assessing anatom-
ical differences at this scale is closely related to the recording
procedure. Thus, an adequate recording duration necessi-
tates both the registration of as many anatomical locations as
possible, within a reasonable time period, and high accuracy
in order to reliably distinguish between the emission inten-
sities of different locations. These two variables, however, act
in opposite manner. Using statistical analyses, it has been
concluded that recording times of 120 s, with emission counts
grouped by seconds, give reliable values that can be used for
these analyses. Differences greater than 1.1 cps between two
locations are found to be statistically significant ( p< 0.01).123

Despite this common anatomic pattern, absolute intensi-
ties of emission have been shown to vary widely between
subjects, in some cases by up to a factor of 5. Analysis of

FIG. 1. Human biophoton emis-
sion measured in a single subject.
Spectral distribution of spontaneous
emission of different body sites of
subject A: right anterior upper leg,
forehead, left hand, and right hand
(Reprinted with permission from
Forschende Komplementarmedizin und
klassische Naturheilkunde¼Research
in Complementary and Natural Clas-
sical Medicine, copyright held by
S. Karger GmbH, Freiburg).123
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biophoton emission from the hands suggest that emitted
photons are generated from both the skin surface and inte-
rior sources. Spectral analysis documents major spontaneous
emission at 470–570 nm, indicating a specific electron-excited
state.123 Excited carbonyl groups, perhaps generated by re-
actions between excited singlet oxygen molecules and un-
saturated lipids, may be responsible for this emission.
Furthermore, it has also been shown that biophoton emis-
sion is altered in the presence of antioxidants.47 Other data
has confirmed that human biophoton emission is oxygen-
dependent and reduced in hypoxic conditions.123

A Potential Clinical Partnership

As most clearly described by Kobayashi et al., (visible and
infrared) biophoton emission reflects the pathophysiological
state with respect to ATP production and susceptibility to
oxidative stress, which derives from excessive production of
ROS or a lack of antioxidant activity. 48 Biophotons are thus a
window into the redox state of the mitochondrial electron
transport chain.

Biophoton emission from the mitochondria may similarly
indicate localized redox conditions relevant to the mito-
chondrial electron transport chain and its light sensitive ele-
ments. Thus, biophoton emission seems uniquely suited to
noninvasively characterize redox conditions related to low-
intensity light sensitivity at the level of the mitochondrial
electron transport chain.

The potential for clinically relevant in vivo human bio-
photon detection now exists. Although individual and ana-
tomic variation need to be further clarified, skin-surface
measurement of biophotons can be used to assess localized
oxidative stress in superficial tissues. This information may
be clinically useful in LILT. Biophoton emission might indi-
cate mitochondrial redox conditions and thus potential sen-
sitivity to LILT. Biophoton detection and analysis should
therefore be investigated in connection with LILT clinical
response. Investigating the relationship between biophoton
emission, LILT, and wound healing (given the superficial
source of biophotons) seems a reasonable starting point. In
order to test the relationship between biophoton emission,
redox status, LILT sensitivity, and clinical response, we
suggest a study of LILT in wound healing, which would
include interval assessment of biochemical redox markers
and biophoton emission. Perhaps, biophoton measurement
will be helpful in advancing LILT, and conversely, perhaps
LILT will help us to further explore the now detectable world
of biophotons.
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